
International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1165
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Dependability Tests Selection Based on the
Concept of Layered Networks

Andrey A. Shchurov, Radek Mařík

Abstract— Nowadays, the consequences of failure and downtime of distributed systems have become more and more severe. As an
obvious solution, these systems incorporate protection mechanisms to tolerate faults that could cause systems failures and system
dependability must be validated to ensure that protection mechanisms have been implemented correctly and the system will provide the
desired level of reliable service. This paper presents a systematic approach for identifying (1) characteristic sets of critical system elements
for dependability testing (single points of failure and recovery groups) based on the concept of layered networks; and (2) the most
important combinations of components from each recovery group based on a combinatorial technique. Based on these combinations, we
determine a set of test templates to be performed to demonstrate system dependability.

Index Terms— Dependebility testing, distributed systems, formal models, layered networks.

—————————— ——————————

1 INTRODUCTION
OMPUTING systems have come a long way from a single
processor to multiple distributed processors, from indi-
vidual-separated systems to networked-integrated sys-

tems, and from small-scale programs to sharing of large-scale
resources. Moreover, nowadays virtualization and cloud tech-
nologies make another level of distributed system complexity.
On the other hand, the consequences of failure and downtime
have become more severe. They might endanger human lives
and the environment, do serious damage to major economic
infrastructure, endanger personal privacy, undermine the via-
bility of whole business sectors and facilitate crime [1]. As an
obvious solution, computing systems incorporate protection
mechanisms to tolerate faults that could cause systems failures
and, as a consequence, the most difficult part of systems de-
ployment is the question of assurance that system dependabil-
ity mechanisms (fault tolerance or high availability) have been
implemented correctly and a system is able to provide the de-
sired level of reliable service.

Dependability is an integrating concept that unites the at-
tributes of reliability, availability, safety, integrity and main-
tainability. The original definition of dependability determines
the system ability to deliver service that can justifiably be
trusted [2] (this definition stresses the need for justification of
trust). The engineering definition is simpler – dependability is
the ability of a system to avoid service failures or the probabil-
ity that a system will operate when needed. The four major
categories of dependability are:

• fault prevention, i.e. prevention of the occurrence or
introduction of faults;

• fault removal, i.e. reduction of the number and severi-
ty of faults;

• fault forecasting, i.e. estimation of the present number

and the likely consequences of faults
• fault tolerance, i.e. avoidance of service failures in the

presence of faults as the basic mechanism for achiev-
ing dependability requirements [3]. We need to state
here the difference between fault tolerance and high
availability: a fault tolerant environment has no ser-
vice interruption, while a highly available environ-
ment has minimal service interruption.

The key factor of fault tolerance (or fault transparency [4] is
preventing failures due to system architectures and it address-
es the fundamental characteristic of dependability require-
ments in two ways [5]:

• replication, i.e. providing multiple identical instances
of the same component and choosing the correct
result on the basis of a quorum (voting);

• redundancy, i.e. providing multiple identical instanc-
es of the same component and switching to one of the
remaining instances in case of a failure (failover).

As a consequence, a system must be validated to ensure that
its replication/redundancy mechanism has been correctly im-
plemented and the system will provide the desired level of
reliable service. Fault injection (the deliberate insertion of
faults into a system to determine its response [6] [7]) offers an
effective solution to this problem. Fault-injection experiments
provide a means for understanding how these systems behave
in the presence of faults (the monitoring of the effects the in-
jected faults have on the systems final results). Simulated fault
injection (or environment fault injection) [8] [9] [10] [11] can
support all system abstraction levels – architectural, function-
al, logical, and electrical. This mixed-mode simulation, where
the system is hierarchically decomposed for simulation at dif-
ferent abstraction levels, is particularly useful in the case of
complex distributed systems.

C

————————————————
• Andrey A. Shchurov - Department of Telecommunications Engineering,

Czech Technical University in Prague, The Czech Republic, E-mail:
shchuand@fel.cvut.cz

• Radek Mařík - Department of Telecommunications Engineering, Czech
Technical University in Prague, The Czech Republic, E-mail:
marikr@fel.cvut.cz

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1166
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

In turn, strategies for the fault-injection experiments are
generally based on methods for assessing system reliability
(identifying potential faults and determining the resulting
error effects) [12] [13] [14] [15]. Typically, it is a document-
centric evaluation, where a group of engineers evaluates the
system. But in the case of complex or non-standard systems,
personal experience and/or intuition are often inadequate.
Our main goal is the automated design and generation of test-
ing procedures/specifications and plans for distributed sys-
tems based on end-user requirements and technical specifica-
tions as a necessary part of project documentation. Thus, to
accomplish such a goal we need to identify a test strategy for
fault-injection experiments based on a formal model with the
following criteria: (1) it has to cover all aspects of distributed
systems [4]; and (2) it has to be simple enough for commercial
application.

This paper presents a systematic approach for identifying:
• characteristic sets of critical elements (hardware and

software) of the distributed system under test (DSUT)
for dependability testing (single points of failure and
recovery groups) based on the concept of layered
networks;

• the most important combinations of components from
each recovery group based on the combinatorial (or
truth tables) technique.

Based on these combinations, we determine the set of test
templates which should be performed to demonstrate that
protection mechanisms for achieving dependability require-
ments (fault tolerance or high availability) have been imple-
mented correctly.

The rest of this paper is structured as follows. Section 2 in-
troduces the related work. Section 3 presents a test strategy for
fault-injection experiments based on the formal multilayer
model of distributed systems for checklist generation missions
and analytical tools for system reliability assessment. Section 4
introduces an example based on a simple multi-layered sys-
tem. Finally, conclusion remarks are given in Section 5.

2 RELATED WORK
Nowadays, models for assessing reliability of distributed
systems can be roughly classified into [16]:

• user-centric models;
• architecture-based models;
• state-based models.

2.1 User-Centric Models
Generally, user-centric models can be defined as the top-down
or service-oriented approach (i.e. the viewpoint of the busi-
ness/end-users community) to the reliability of distributed
systems [17] [18] [19]. As reliability of any system has direct
impact on the system usage, so these models focus on us-

er/subscriber and provider behavior and basically work on
the principle of evaluating transmission time to compute the
execution time of each file or program under real conditions
running in a distributed environment. As a consequence, the
system reliability is based on the operational or usage profile
of the given set of services.

The common analytical tool for user-centric models is time-
based models (founded on the queueing theory) [19] [20]. Us-
er-centric approaches can be characterized as multi-stage
problem solving processes where the system is conceived in
terms of user behavior.

2.2 Architecture-Based Models
In contrast to the user-centric models, architecture-based
models can be defined as the bottom-up or hardware-based
approach (the viewpoint of the engineering community) to the
reliability of distributed systems. In turn, they can be classified
into: (1) component-oriented models; (2) communication-
oriented models.

Component-oriented models represent distributed systems
as a composition of multiple processors but completely ignore
the failures of communications and assume that the communi-
cation channels (links) among the processors are perfect [21]
[22] [23]. Without considering communication failures, the
exchanged information between components (software and
hardware) must always be correct. In this case, the problem of
distributed system reliability can be reduced to a parallel-
series structure. In turn, the parallel-series reliability is easy to
calculate [23] [24] [25] [26]. Such condition may be a good ap-
proximation for a system that exchanges only a little infor-
mation among nodes, such as those where the processors do
only their own jobs (no intensive data transmission).

The analytical tool for component-oriented models is relia-
bility block diagrams (one of the conventional and most com-
mon tools of system reliability analysis [25] [26]).

In contrast to the component-oriented models, communica-
tion-oriented models consider the communication failures and
assume that the components themselves (the nodes of net-
works) are always perfect [23] [26] [27]. They suppose that the
system failures are caused by the communication failures on
channels (links) while the components (or nodes) cannot fail
during the executing of programs. Such condition is a good
approximation for cases where the communication time dom-
inates the time of program execution or the components are
highly reliable in comparison to the channels.

The analytical tool for communication-oriented models is
network diagrams (commonly used in representing communi-
cation networks consisting of individual links [23]).

An additional effective analytical tool for architecture-base
models is fault tree diagrams (the underlying graphical model
in fault tree analysis) [23] [25] [28]. Whereas the reliability
block diagrams and network diagrams are mission success
oriented, the fault tree shows which combinations of the com-
ponent failures can lead to system failures. And fault tree dia-
grams can describe the fault propagation in systems. Howev-
er, repair and maintenance (two important operations in sys-
tem analysis) cannot be expressed using a fault tree formula-
tion.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1167
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2.3 State-Based Models
The first generation of state-based models that considered
both node failures and link failures have a common assump-
tion - the operational probabilities of nodes or links are con-
stant without considering bandwidth and content (constant-
reliability models) [29] [30] [31]. However, this assumption of
the constant-reliability of elements is not suitable in practice.
Intuitively, downloading a larger file from a remote site will
have a higher risk of failure than downloading a smaller file
through the same link [32].

The most recent models relax this assumption for the ele-
ments (nodes and links). Instead, they assume that the failures
of elements follow Poisson processes, so that the more time an
element works (including execution and communication), the
less reliable that element is [32] [33] [34]. In addition, the tradi-
tional models study the network topology by physical links
and nodes that are static without considering dynamic chang-
es of components and logic structures. To solve these prob-
lems, recent models use a virtual structure instead of physical
structure [33] [34].

The analytical tool for state-based models is Markov mod-
els [23] [25]. To deal with all sorts of errors such as time-out
failures, blocking failures, network failures, etc. (which can
occur during operations of execution and communication), a
hierarchical model must be used. This model suggests tackling
various errors in different layers and uses Markov state prin-
ciple to map layers into different physical states [16].

In turn, the general approach (common to all types of mod-

els) is to treat reliability as a complex problem and to decom-
pose the distributed system into a hierarchy of related subsys-
tems or components. Rebaiaia and Ait-Kadi [35] provide a
survey of methods, algorithms and software tools. But it is
important to note that the reliability evaluation problem is
NP-complete and, as a consequence, the generation of an exact
solution is very problematic. An interesting solution called
mission-oriented reliability is represented by Wang et al [36]
and Luo et al [37] based on the concept of layered networks
[38]. The core component of this solution is a two-layer model
with the lower-layer topology (physical network) for a physi-
cal graph and the upper-layer topology (mission network) for
a logical graph. Both graphs have the same nodes and one
edge in the logical graph is related to a path from the source
node to the destination node in the physical graph. In that
way, the network missions are modeled as a network, and the
mission-oriented network reliability can be calculated on the
mission network which consists of many fewer nodes and
links than the physical network does (reduction of complexi-
ty).

Moreover, reliability of network topologies is the great
challenge for all these models. Network communications are
usually considered either (1) as physical communication struc-
tures based on the properties of communication hardware
(physical links and nodes); or (2) as virtual communication
structures (virtual information links) which normally hide the
properties of communication hardware. In both cases, the lay-
ered structure of real communication protocols is completely
ignored.

3 TEST STRATEGY FOR FAULT-INJECTION
EXPERIMENTS

The essential idea of our approach is based on the concept of
layered complex networks [38]. But in contrast to [36] [37], the
core component of our solution is the formal four layered
model for test generation missions [39]. This model is stated as
a four-layered graph as follows:

• The functional (or ready-for-use system) architecture
layer defines functional components and their
interconnections (end-user requirements
representation). An important note – this layer can be
used for representation of social networks.

• The service architecture layer defines software-based
components (services/applications) and their
interconnections.

• The logical architecture layer defines logical (virtual)
components and their interconnections.

• The physical architecture layer defines hardware
(physical) components and their interconnections.

• The interlayer projections define all types of
components hierarchical (interlayer)
relations/mapping. These relations make the layered
model consistent and represent interlayer
technologies (virtualization, clustering, etc.) used to
build DSUT.

The model formal notation Gn for each layer n can be repre-
sented as:

Gn = (Vn, En, Mn−1
n , Vn−1) (1)

And:
G = ⋃ Gn

N
n=1 (2)

where G is multi-layered 3D graph, derived from the system
specification; N is the number of DSUT layers; Vn is a finite,
non-empty set of components on layer n; En is a finite, non-
empty set of component-to-component connections on layer n;
Mn−1

n is a finite set of component-to-component projection
from layer n to layer n-1; and Vn−1 is a finite set of components
on layer n-1.

Applying the requirements-coverage test strategy [40] to
the model covers each interaction from the end-user require-
ments on system, logical and physical architectural layers and,
as a consequence, provides the sets of test templates for each
architectural layer:

Tn = {(Pn1, cn1), (Pn2, cn2), … , (Pnk, cnk)} (3)

where Pni represents the paths (or data flows) in Gn; and cni are
technical characteristics of component-to-component commu-
nication processes. In turn, each path Pni is the set of individu-
al components which communicate each other and define this
path (data flow):

Pni = {vn1, vn2, … , vnm}, vni ∈ Vn (4)

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1168
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

This approach allows use of the advantages of (1) the concept

of layered complex networks [38] and (2) the approach of
mission-oriented reliability [37] but it covers all layers of OSI
Reference Model [41] and, as a consequence, both software-based
and network-based aspects of distributed systems [39].
The next steps are based on the appropriate analytical tools for
reliability assessment (analysis is performed independently for
each architectural layer):

• success (logic) tree approach (as a special case of the
fault tree approach);

• combinatorial (or truth tables) technique for the logic
trees evaluation.

3.1 Success Tree Approach
The system performance can be considered from two opposite
viewpoints: the various ways that a system fails or the various
ways a system succeeds. The success tree approach [28] is a
deductive process by means of which a desirable event, called
the top event, is postulated, and the possible ways for this
event to occur are systematically deduced. The success tree,
which shows the various combinations success events that
guarantee the occurrence of the top event, can be logically
represented by path sets. The Boolean expression for the
success tree can be written as [42]:

Sn = Pn1∗ ⋁Pn2∗ ⋁…⋁Pnk∗ (5)

where Sn is the top event which denotes the state of the system
on layer n (the entire system is in operational state iff it is in
operational state on all layers simultaneously):

Sn = �
1, system is in operational state (OS)
0, system is in failure state (FS) (6)

and Pni∗ represents the path sets of the logical tree on layer n. In
turn, each path set can be written as [42]:

Pni∗ = vn1∗ ⋀vn2∗ ⋀…⋀vnm∗ (7)

where vni∗ represents the basic events (or the state of individual
components) in the success tree on layer n:

vni∗ = �
1, component vni is in OS
0, component vni is in FS , vni ∈ Vn (8)

In the case of complex systems that need more than one de-

sirable top event simultaneously (composed of subsystems),
the resulting expression of the entire system can be defined as
a conjunction of success trees of their subsystems.

One of the main purposes of representing logical trees in

terms of Boolean equations is that these equations can be
reduced to its the most compact form which represents the
minimal path sets or “minimal prevention sets” [42]. In our
case, the most convenient representation of these compact
forms is the conjunctive normal form (CNF) that provides a
particular representation of the success tree as a set of sets of
basic events. The Boolean expression of the success tree in
conjunctive normal form for each layer n can be written as:

SnCNF = ⋀ �⋁ vnij∗

ri
j=1 �l

i=1 (9)

where l is the number of clauses in the CNF expression, and 𝑟𝑖 is
the number of literals (or basic events) in each clause; and vnij∗
represents the basic events:

vnij∗ = �
1, component vnij is in OS
0, component vnij is in FS , vnij ∈ Vn (10)

And:
�vnij | 1 ≤ i ≤ l; 1 ≤ j ≤ ri� ⊆ {vni | 1 ≤ i ≤ m} ⊆ Vn (11)

This resulting CNF expression defines two characteristic (pre-
vention) sets for dependability testing:
Single Points of Failure [13]. If a clause of the resulting expres-
sion in CNF is a literal, i.e. it represents a single component of
DSUT, so this component is a single point of failure. It means
all possible paths can be destroyed by removing this compo-
nent. As a consequence, components of that kind do not need
additional testing but disaster recovery plans as part of project
documentation.The set of components that are single points of
failure for each layer n:

SPOFn = �vnij|1 ≤ i ≤ l; 1 ≤ j ≤ ri;; ri = 1�, vnij ∈ Vn (12)

Recovery Groups [13]. If a clause of the resulting expression in
CNF is a disjunction of literals, i.e. it represents a group of
component of DSUT, so this group provides topological re-
dundancy. It means all possible paths cannot be destroyed by
removing a single component of this group – an alternative
path (or paths) still exists. As a consequence, components of
that kind need additional testing of protection mechanisms
(sensing and switching). The set of components that provide
fault tolerance for each layer n:

RGn = �vnij|1 ≤ i ≤ l; 1 ≤ j ≤ ri; ri ≥ 2�, vnij ∈ Vn (13)

For the case of systems which can tolerate failures of k arbi-
trary components simultaneously:

l ≥ k, ri ≥ k + 1 (14)

A special case of recovery groups is the set of access points
or end-user components (hardware and software). As a rule,
these components are starting points of the most paths (data
flows). However, generally fault tolerant design (replication or
redundancy) is normally not used for end-user components.
This statement is based on two main reasons:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1169
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

• economic reason – replication/redundancy tends to
increase the system cost;

• technical reason – replication/redundancy may
increase complexity to the point where the
replication/redundancy itself contributes to accidents
[1].

As a consequence, DSUT components of that kind do not con-
tain protection mechanisms and do not need additional test-
ing. Based on this assumption, access points (end-user com-
ponents) can be eliminated from analysis by converting all
literals which represent these components into tautologies. In
this case, the resulting Boolean structures for each layer n can
be represented as:

SnCNF = ⋀ �⋁ vnij∗∗
ri
j=1 �l

i=1 , vnij∗∗ = �
1, vnij ∈ An

vnij∗ , vnij ∉ An
, An ⊂ Vn (15)

where An is the set of access points (or end-user devices) on
layer n.

3.2 Logic Trees Evaluation
When calculating the probability of multiple simultaneous
failures, the number of combinations that should be tested can
be reduced dramatically. So, for further analysis of the result-
ing Boolean structures in CNF we can use the combinatorial
(or truth tables) technique [25]. This method relies on a com-
binatorial algorithm to exhaustively generate all probabilisti-
cally significant combinations of both failure and success
events and subsequently to propagate the effect of each com-
bination on the logic tree to determine the state of the top
event. The quantification of logic trees based on the combina-
torial method yields exact results and these are associated
with a specific physical state of DSUT [25].

The sum of the probabilities of all possible combinations is
unity because the combinations are all mutually exclusive and
cover all event space [25]. For the case of independent
identical units (IIU) with reliability of p, the universal set for
DSUT can be represented as:

∑ �mk�(1− p)kpm−km
k=0 = 1 (16)

where k is the number of failed components, and m is the
number of DSUT individual components defined by the
resulting Boolean structure in CNF – see (15):

m = ∑ ril
i=1 (17)

Theoretically testing activities should cover the universal set.
However, in this case the number of combinations C that should

be tested is:
C = ∑ �mk�

m
k=0 = 2m (18)

For independent identical units (IIU) with reliability of p,

the reliability expression R for DSUT can be defined based on
the set of components that provide fault tolerance (or clauses
of the resulting CNF expression – see (15)):

R = ∏ �∑ �rij � (1− p)jpri−jri−ki
j=0 �l

i=1 (19)

where 𝑘𝑖 is the number of individual components in each
recovery group of the 𝑟𝑖 items that must be in the operational
state for the system to be in the operational state (k-out-of-r
structure).

In the worst case of 𝑘𝑖 = 1 (this case determines the
maximum number of possible combinations), the number of
combinations in each recovery group is:

Ci = 2ri − 1 | ri ≥ 2 (20)

However one combination must be excluded from analysis –
all components of a system are in operational state – this state
is the initial state for fault-injection testing. Thus, the number
of combinations C that must be tested is:

C = �∏ (2ri − 1)l
i=1 � − 1 (21)

The next step of our approach is based on two basic as-

sumptions:
• Real distributed engineering systems are usually

under great financial and timing constraints and, as a
consequence, they consist of the smallest possible set
of components with a minimal number of
communication links as a tradeoff between cost and
reliability requirements, i.e. their topologies can be
represented by Harary graphs [43] (connected simple
graphs with a minimal number of edges) with the
additional links based on technological requirements.

• It is not necessary to cover all possible successful
combinations but the most important (the most likely)
only [44]. In turn, the most important combination
can be derived from end-user requirements as the
number of failures which a system is able to tolerate
simultaneously.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1170
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

We need to state here:
• Big data centers which can contain thousands of

servers (hardware and software instances) are beyond
the scope of this work due to possible legislation
challenges [45]. Nevertheless, they can be divided
into small subsystems based on individual functional
tasks (end-user requirements).

• Specific areas (the military, nuclear or aerospace
industries) are beyond the scope of this work.

The most typical values of the number of clauses (after elimi-
nation of end-user components) are based on architectural
solutions:

• The physical architecture layer. The assumption is
based on the hierarchical design model [46]. The
upper bound represents core, distribution
(aggregation) and access network layers with an
additional layer for server hardware and the lower
bound represents the fact that even the simplest
architecture consist of at least one network
component and at least one server: 2 ≤ l ≤ 4.

• The logical architecture layer. It is similar to the
physical architecture layer but based on virtual
components: 2 ≤ l ≤ 4.

• The service architecture layer. The assumption is
based on the three-tiered architecture [4]. The upper
bound represents user-interface, processing and data
levels and the lower bound represents the fact that in
the case of the simplest client-server model clients can
directly communicate with servers: 1 ≤ l ≤ 3.

In turn, the most typical values of the number of literals (indi-
vidual components) in each clause (after elimination of end-
user components) are based on technological solutions:

• Redundancy [5]. Two identical instances of the same
component in active/standby (switching to the
remaining instances in case of a failure) or
active/active mode, i.e. 1-out-of-2 structure: ri =
2, ki = 1.

• Replication [5]. Three identical instances of the same
component in active mode (choosing the correct result
on the basis of a quorum), i.e. 2-out-of-3 structure:
ri = 3, ki = 2.

The typical reliability values (examples) of COTS equipment
(hardware) is shown in Table 1. Unfortunately, it is impossible
to find similar data for COTS software. Nevertheless, for sta-
ble releases of software components (services and/or plat-
forms – operating systems/firmware) the reliability function
becomes dominated by hardware failures and the impact of
software failures becomes smaller with respect to the total
component failure rate [26] [47]. So, analysis of the physical
architecture layer can be applicable to the entire system.

1. In the case of a system which can tolerate failures of a single
arbitrary component (or just have no single points of failures),
the most important states that should be covered by tests are:

• a system is in operational state and all components are
in operational state;

• a system is in operational state and a single arbitrary
component is in failure state.

A special case (or an exception) is if solutions are based on
virtualization technologies: they must tolerate failures of a
single arbitrary physical server (hardware failure) while an-
other one is in maintenance mode [48]. However it is a ques-
tion of the resources sharing/allocation, not specific protection
mechanisms.

The system reliability assessment RL1 (the probability of
finding DSUT in these states) is:

RL1 = pm +∑ [ri(1− p)pri−1]pm−ri = pm + m(1 − p)pm−1l

i=1 (19)

In turn, the deviation of the system reliability assessment D
can be defined as:

D = R−RL1
R

100% (20)

In the case of low-quality individual components
(0.6 ≤ p ≤ 0.9), the result is shown in Fig. 1. In turn, Fig. 2
shows the result of high-quality components (0.9 ≤ p < 1).

Fig. 1. Deviation of the system reliability assessment. in the case of low-

quality components (0.6 ≤ p ≤ 0.9).

Fig. 2. Deviation of the system reliability assessment. in the case of high-

quality components (0.9 ≤ p < 1).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1171
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Based on information from Table 1, the average value of the
system reliability assessment deviation in the case of COTS
equipment is less than 1%.

As a consequence, the number of combinations C that
should be tested based on the system reliability assessment is
quite trivial compared with the universal set coverage:

C = m, m ≥ 2 (21)

But this trivial result covers at least 99% of specific states of
DSUT.

2. In the specific case of reliable systems which can tolerate
failures of up to two arbitrary components simultaneously, the
most important states that should be covered by tests are:

• a system in operational state and all components of a
system are in operational state;

• a system in operational state and a single arbitrary
component is in failure state;

• a system in operational state and two arbitrary
components are in failure state.

So, the system reliability assessment 𝑅𝐿2 can be represented as:

RL2 = pm + m[(1− p)pm−1] + m(m−1)
2

[(1− p)2pm−2] (22)

In this case, the number of combinations that should be tested
C is:

C = m + m(m−1)
2

= m(m+1)
2

, m ≥ 3 (23)

It might be difficult to say whether this result is acceptable for
commercial application. A possible solution is using two
simple (which can tolerate failures of a single arbitrary
component) systems in parallel instead of a complex one.

3.3 Fault-Injection Experiments
Based on its nature, the dependability testing (or testing of the
sensing and switching protection mechanisms) must include
two main steps:

Component Fault Injection (𝐹𝐹𝐹). This step determines two
interrelated activities that cannot be divided:

• sensing mechanism verification – the sensing
mechanism is able to (1) detect a component failure,
and (2) trigger the switching mechanism;

• switching mechanism verification – the switching
mechanism is able to reconfigure DSUT topology (re-
route data flows) due to the component failure.

Component Repair (𝐹𝐹𝐹). In turn, this step determines the two
interrelated activities:

• sensing mechanism verification – the sensing
mechanism is able to (1) detect a component resurrection,
and trigger the switching mechanism (if necessary);

• switching mechanism verification – the switching
mechanism is able to restore DSUT initial topology (if
necessary).

As a consequence, each fault injection action/step defines two
test templates and the set of test templates Tn

FIJ for fault
injection experiments can be defined as:

Tn
FIJ = ��FIJ�vnij�, FIJ(vnij)� | 1 ≤ i ≤ l; 1 ≤ j ≤ ri; ri ≥ 2� (24)

So, in the case of systems which can tolerate failures of a single
arbitrary component, the number of test templates for fault
injection experiments (dependability testing) |TFIJ| is:

|TFIJ| = ∑ 2(|RGn|− |An|) = ∑ 2(|Vn|− |SPOFn|− |An|)N

n=1
N
n=1 (25)

The next step is based on the following assumptions:

• The number of DSUT layers is limited by the system
model (see [39]): N = 3 – the Functional architecture

Fig. 3. A simple multi-layered system (an example).

TABLE 1
RELIABILITY OF COTS EQUIPMENT (EXAMPLES)

* Data sources: Cisco - [49] [50] [51]; Dell - [52]; Plextor - [53].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1172
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

layer does not define real (software or hardware)
components.

• The maximum possible number of tests templates
(dependability testing) can be achieved if: (1) the
number of end-users (access point) which must be
eliminated from analysis has the minimal value:
|𝐴𝑛| = 1; 1 ≤ 𝑛 ≤ 3; and (2) the number of single
points of failure has the minimal value:
|𝑆𝑆𝑆𝐹𝑛| = 0; 1 ≤ 𝑛 ≤ 3.

So:
|TFIJ| ≤ ∑ 2(|Vn|− 1)3

n=1 < ∑ 2|Vn|3
n=1 (26)

In turn, in the specific case of systems which can tolerate fail-
ures of up to two arbitrary components simultaneously, the
number of tests templates for fault injection experiments is:

|TFIJ| ≤ ∑ 2(|Vn|− 1)23
n=1 < ∑ 2|Vn|23

n=1 (27)

4 CASE STUDY
As a practical example, we have a simple multi-layered system
(see Fig. 3). The requirements-coverage strategy application to
this simple example defines data flows which cover the model
based on requirements – see Table 2.1 and Table 2.2.
The resulting Boolean structures in conjunctive normal form
after elimination of end-user components for each layer are
shown in Table 3. In turn, these structures define characteristic
sets for dependability testing:

• two sets of single points of failure:
Service layer:

SPOF3 = {WEB_Server_1, DNS_Server_1}
Logical layer:

SPOF2 = {VLAN_1, VServer_1, VServer_2}
• the set of components that provide fault tolerance (a

recovery group):
Physical layer:

RG1 = {Switch_1, Switch_2, Server_1, Server_2}

As a result we have a set of objects which need additional (de-
pendability) testing of sensing and switching protection mecha-
nisms.

A formal set of test templates covers all successful DSUT op-
eration status - see Table 4 NN 1 – 3, 5 – 7 and 9 – 11. The system
reliability is 96.93723651%.

In turn, the optimized set of test templates covers the most
important only - see Table 4} NN 1 – 3, 5 and 9. The system reli-
ability assessment is 95.93835902%.

So, based on these optimization steps, we can reduce the
number of tests templates from 20 to 8 (2.5 times) with the
Reliability Assessment Deviation 1.030%.

4 CONCLUSION
Deployment of distributed systems sets high requirements for
procedures, tools and approaches for complex testing of these
systems. And the most difficult part of systems deployment is
the question of assurance that system dependability protection
mechanisms (fault tolerance or high availability) have been
implemented correctly and a system is able to provide the
desired level of reliable service.

This paper presents a systematic approach for identifying

TABLE 2.1
APPLICATION OF THE REQUIREMENTS-COVERAGE STRATEGY.

BASIC SUBSYSTEM (END-USER REQUIREMENT):
[SERVICE_SUBSCRIBER_X, SERVICE_PROVIDER_X]

TABLE 2.2
APPLICATION OF THE REQUIREMENTS-COVERAGE STRATEGY.

ADDITIONAL SUBSYSTEM (TECHNICAL REQUIREMENT DERIVED FROM
END-USER REQUIREMENT): [WEB_CLIENT_X, DNS_SERVER_X]

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1173
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

critical elements based on the concept of layered networks [38].
The key component is the formal four layered model for test
generation missions [39]. This model is the four-layered 3D
graph, derived from the system technical specifications, which
covers all layers of OSI Reference Model [41].

Applying the requirements-coverage test strategy [40] to the
model covers each interaction from the end-user requirements
on system, logical and physical architectural layers and, as a
consequence, provides the sets of paths (or data flows) for each
layer (each path is the set of individual components which
communicate each other and define this path).

The next steps are based on the analytical tools for reliability
assessment (analysis is performed independently for each
architectural layer):

• Success (logic) tree approach (as a special case of the
fault tree diagrams) allows us to represent the sets of
paths (or data flows) as a Boolean structure in
conjunctive normal form (CNF) and, as a
consequence, defines two characteristic sets for
dependability testing: (1) sets of single points of
failure; (2) sets of components that provide fault
tolerance (recovery groups).

• In turn, combinatorial (or truth tables) technique for
the logic trees evaluation defines the most important
combinations of components from each recovery
group that must be tested.

Based on these combinations, we determine the set of test
templates which should be performed to demonstrate that
protection mechanisms for achieving dependability require-
ments (fault tolerance or high availability) have been imple-
mented correctly.

This approach allows use of the advantages of (1) the con-
cept of layered complex networks and (2) the approach of mis-
sion-oriented reliability – reduction of complexity - but it co-
vers all layers of OSI Reference Model and, as a consequence,
both software-based and network-based aspects of distributed
systems.

REFERENCES
[1] N.G. Leveson, Safeware: system safety and computers, ACM, 1995.

[2] A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, "Basic
concepts and taxonomy of dependable and secure computing,"
Dependable and Secure Computing, IEEE Transactions on, vol. 1, no. 1,
pp. 11-33, January 2004.

[3] A. Bucchiarone, H. Muccini and P. Pelliccione, "Architecting Fault-
tolerant Component-based Systems: From Requirements to Testing,"
Electron. Notes Theor. Comput. Sci., vol. 168, pp. 77-90, February 2007.

[4] A.S. Tanenbaum and M.v. Steen, Distributed Systems: Principles and
Paradigms, 3rd ed., Prentice Hall Press, 2013.

[5] H. Langmaack, W.-P. d. Roever and J. Vytopil, Eds., Formal
Techniques in Real-Time and Fault-Tolerant Systems: Third
International Symposium Organized Jointly with the Working Group
Provably Correct Systems, Springer-Verlag, 1994.

[6] J.A. Clark and D.K. Pradhan, "Fault injection: a method for validating
computer-system dependability," Computer, vol. 28, no. 6, pp. 47-56,
June 1995.

[7] D. Avresky, J. Arlat, J.-C. Laprie and Y. Crouzet, "Fault injection for
formal testing of fault tolerance," Reliability, IEEE Transactions on, vol.
45, no. 3, pp. 443-455, September 1996.

[8] D.d. Andres, J.-C. Ruiz, D. Gil and P. Gil, "Fault Emulation for
Dependability Evaluation of VLSI Systems," Very Large Scale
Integration (VLSI) Systems, IEEE Transactions on, vol. 16, no. 4, pp. 422-
431, April 2008.

[9] C. Bolchini, A. Miele and D. Sciuto, "Fault Models and Injection
Strategies in SystemC Specifications," in Digital System Design
Architectures, Methods and Tools, 2008. DSD '08. 11th EUROMICRO
Conference on, 2008.

[10] D. Lee and J. Na, "A Novel Simulation Fault Injection Method for
Dependability Analysis," Design Test of Computers, IEEE, vol. 26, no. 6,
pp. 50-61, 2009.

[11] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso,
M. Portela and C. Lopez-Ongil, "Soft Error Sensitivity Evaluation of

TABLE 3
RESULTING BOOLEAN EXPRESSIONS FOR DEPENDABILITY ANALYSIS

TABLE 4
COMBINATORIAL METHOD (TRUTH TABLE)

* Probability of system operatin status is calculated based on data from Table 1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 1, January-2015 1174
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Microprocessors by Multilevel Emulation-Based Fault Injection,"
Computers, IEEE Transactions on, vol. 61, no. 3, pp. 313-322, 2012.

[12] O.P. Yadav, N. Singh and P.S. Goel, "Reliability demonstration test
planning: A three dimensional consideration," Reliability Engineering
& System Safety, vol. 91, no. 8, pp. 882-893, 2006.

[13] E. Bauer and R. Adams, Reliability and Availability of Cloud
Computing, 1st ed., Wiley-IEEE Press, 2012.

[14] K. Benz and T. Bohnert, "Dependability Modeling Framework: A Test
Procedure for High Availability in Cloud Operating Systems," in
Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th, 2013.

[15] S. Reiter, M. Pressler, A. Viehl, O. Bringmann and W. Rosenstiel,
"Reliability assessment of safety-relevant automotive systems in a
model-based design flow," in Design Automation Conference (ASP-
DAC), 2013 18th Asia and South Pacific, 2013.

[16] W. Ahmed and Y.W. Wu, "A Survey on Reliability in Distributed
Systems," J. Comput. Syst. Sci., vol. 79, no. 8, pp. 1243-1255, December
2013.

[17] E. Huedo, R.S. Montero and I.M. Llorente, "Evaluating the reliability
of computational grids from the end users point of view," Journal of
Systems Architecture, vol. 52, no. 12, pp. 727-736, 2006.

[18] V. Cortellessa and V. Grassi, "Reliability Modeling and Analysis of
Service-Oriented Architectures," in Test and Analysis of Web Services, L.
Baresi and E. d. Nitto, Eds., Springer Berlin Heidelberg, 2007, pp. 339-
362.

[19] Z. Zheng and M.R. Lyu, "Collaborative Reliability Prediction of
Service-oriented Systems," in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering, 2010.

[20] D.J. Chen, M.C. Sheng and M.S. Horng, "Real-time distributed
program reliability analysis," in Parallel and Distributed Processing,
1993. Proceedings of the Fifth IEEE Symposium on, 1993.

[21] J.-C. Laprie and K. Kanoun, "X-ware reliability and availability
modeling," Software Engineering, IEEE Transactions on, vol. 18, no. 2,
pp. 130-147, 1992.

[22] Y.S. Dai, M. Xie, K.L. Poh and S.H. Ng, "A model for correlated
failures in N-version programming," IIE Transactions, vol. 36, no. 12,
pp. 1183-1192, 2004.

[23] M. Xie, K.L. Poh and Y.S. Dai, Computing System Reliability: Models
and Analysis, Springer, 2004.

[24] M.L. Shooman, Reliability of Computer Systems and Networks: Fault
Tolerance, Analysis, and Design, John Wiley & Sons, 2002.

[25] M. Modarres, M. Kaminskiy and V. Krivtsov, Reliability Engineering
And Risk Analysis: A Practical Guide, 2nd ed., CRC Press, 2010.

[26] M.L. Ayers, Telecommunications System Reliability Engineering,
Theory, and Practice, 1st ed., Wiley-IEEE Press, 2012.

[27] D. J. Chen and T. H. Huang, "Reliability analysis of distributed
systems based on a fast reliability algorithm," Parallel and Distributed
Systems, IEEE Transactions on, vol. 3, no. 2, pp. 139-154, 1992.

[28] K.G. Stephens, A Fault Tree Approach to Analysis of Behavioral
Systems: An Overview, Distributed by ERIC Clearinghouse, 1974.

[29] P. Kumar, S. Hariri and S.C. Raghavendra, "Distributed program
reliability analysis," Software Engineering, IEEE Transactions on, Vols.
SE-12, no. 1, pp. 42-50, 1986.

[30] Y.S. Dai, M. Xie and K.L. Poh, "Reliability Analysis of Grid
Computing Systems," in PRDC, 2002.

[31] Y.S. Dai, M. Xie, K.L. Poh and G.Q. Liu, "A study of service reliability
and availability for distributed systems," Rel. Eng. & Sys. Safety, vol.
79, no. 1, pp. 103-112, 2003.

[32] Y.S. Dai, M. Xie and K.L. Poh, "Reliability of grid service systems,"
Computers & Industrial Engineering, vol. 50, no. 1-2, pp. 130-147, 2006.

[33] Y.S. Dai, Y. Pan and X. Zou, "A Hierarchical Modeling and Analysis
for Grid Service Reliability," IEEE Trans. Computers, vol. 56, no. 5, pp.
681-691, 2007.

[34] Y.S. Dai, B. Yang, J. Dongarra and G. Zhang, "Cloud Service
Reliability: Modeling and Analysis," 2010. Available:
http://www.techrepublic.com/resource-library/whitepapers/

[35] M.-L. Rebaiaia and D. Ait-Kadi, "Network Reliability Evaluation and
Optimization: Methods, Algorithms and Software Tools," CIRRELT,
2013.

[36] X. Wang, N. Huang, W. Chen and R. Li, "A new method for
evaluating the performance reliability of communications network,"
in Information Networking and Automation (ICINA), 2010 International
Conference on, 2010.

[37] Q. Luo, M. Chen, X. Yin and H. Deng, "Testing mission-oriented
network reliability via hierarchical mission network," in Quality,
Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), 2012
International Conference on, 2012.

[38] M. Kurant and P. Thiran, "Layered Complex Networks," Phys. Rev.
Lett., vol. 96, no. 13, April 2006.

[39] A.A. Shchurov, "A Formal Model of Distributed Systems For Test
Generation Missions," International Journal of Computer Trends and
Technology (IJCTT), vol. 15, no. 6, pp. 128-133, September 2014.

[40] A.A. Shchurov and R. Marik, "A Formal Approach to Distributed
System Tests Design," International Journal of Computer and Information
Technology (IJCIT), vol. 3, no. 4, pp. 696-705, July 2014.

[41] ISO/IEC, ITU-T Rec. X.200 - ISO/IEC 7498:1994 Information technology -
Open Systems Interconnection - Basic Reference Model, 1994.

[42] M. Stamatelatos, W. Vesely, J. Dugan, J. Fragola, J. Minarick and J.
Railsback, Fault Tree Handbook with Aerospace Applications, NASA,
2002.

[43] M.v. Steen, Graph Theory and Complex Networks: An Introduction,
1st ed., Maarten van Steen, 2010.

[44] K. Dooley, Designing Large Scale LANs, O’Reilly Media, 2001.

[45] T. Erl, R. Puttini and Z. Mahmood, Cloud Computing: Concepts,
Technology & Architecture, 1st ed., Prentice Hall Press, 2013.

[46] Cisco Systems, "Campus Design Summary," 2014.

[47] K.V. Vishwanath and N. Nagappan, "Characterizing Cloud
Computing Hardware Reliability," in Proceedings of the 1st ACM
Symposium on Cloud Computing, 2010.

[48] Cisco Systems, "Data Center Technology Design Guide," 2013.

[49] Cisco Systems, "Cisco Catalyst 3650 Series Switches Data Sheet".

[50] Cisco Systems, "Cisco Catalyst 2960-X Series Switches Data Sheet".

[51] Cisco Systems, "Cisco Aironet 1140 Series Access Point Data Sheet".

[52] Dell, "Dell Power Solutions Whitepaper".

[53] Plextor, "Plextor M5 Pro Solid-State Drive Whitepaper".

IJSER

http://www.ijser.org/

	1 Introduction
	2 Related Work
	2.1 User-Centric Models
	2.2 Architecture-Based Models
	2.3 State-Based Models

	3 Test Strategy for Fault-Injection Experiments
	3.1 Success Tree Approach
	3.2 Logic Trees Evaluation
	3.3 Fault-Injection Experiments

	4 Case Study
	4 Conclusion
	References

